Small Diameter Well Workgroup Update

SAM January Update 2003

Timothy W. Shields

Technical Workgroup Members

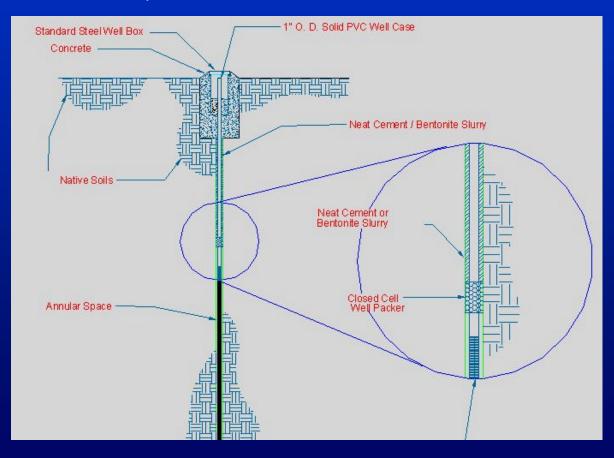
- Carol Spangenberg
 Co-chairperson
 County of San Diego SAM
- Kevin Heaton
 Steering Committee Contact
 County of San Diego SAM
- Blayne Hartman, HP Labs
- Barry Pulver, Regional Water Quality Control Board.

- Timothy Shields Co-chairperson Anteon Corp.
- Jerry Shiller, geologist.
- Chuck Houser, Southern California Soils and Testing
- Bill Hagen, Navy Public Works Center

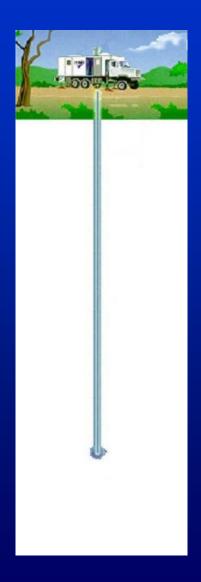
Other Interested Parties:

- Wes McCall, Geoprobe Systems
- Jerry Boehm, Fugro
- Kent Cordry, GeoInsight
- Mark Kram, NFESC

For More Information, Please Contact:


Tim Shields

TShields@Anteon.com


(619) 524-6947

What is a Small Diameter Well?

- A well with an annular space of less than 2 inches.
- Typical casing diameter less than 4 inches (often 1-inch diameter).

Small Diameter Wells Are Usually Constructed Using Direct Push Technology

Why it there a Technical Workgroup?

- In California, wells must be constructed in accordance with the California Well Standards (Bulletin 74) published by the California Department of Water Resources.
- The standards state that wells must have an annular space greater than 2 inches.

Why use Small Diameter Wells?

Cost Avoidance

- Less expensive equipment
- Faster production rates

Waste Reduction

- Can minimize or eliminate soil cuttings
- Can reduce development and purge water

Limited access

 Can install wells in areas that are inaccessible to hollow-stem auger rigs.

Contaminant Data From Small Diameter Wells is Usable

NAVAL FACILITIES ENGINEERING COMMAND Washington, DC 20374-5065

> NFESC Technical Report TR-2120-ENV

PERFORMANCE COMPARISON: DIRECT-PUSH WELLS VERSUS DRILLED WELLS

b

Mark Kram NFESC Code 413 1100 23rd Avenue Port Hueneme, CA 93043

> Dale Lorenzana Intergraph NFESC Code 411

Dr. Joel Michaelsen Department of Geography University of California Santa Barbara, CA 93106

> Ernest Lory NFESC Code 411

January 2001

Approved for public release, distribution is unlimited.

Printed on recycled paper

MONITORING WELL COMPARISON STUDY:

AN EVALUATION OF DIRECT-PUSH

Versus

CONVENTIONAL MONITORING WELLS

May 1, 2002

A Study Conducted By

BP Corporation North America Inc.,

And

The Underground Storage Tank (UST) Programs of U.S. Environmental Protection Agency Regions 4, Atlanta GA And Region 5, Chicago, IL

Other Guidelines For "Direct Push Wells"

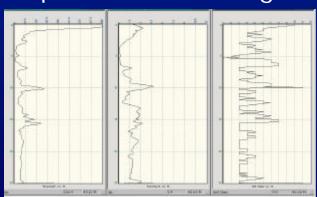
- ASTM D 6724-01 Standard Guide for Installation of Direct Push Ground Water Monitoring Wells
- ASTM D 6725-01 Standard Guide for Direct Push Installation of Prepacked Screen Monitoring Wells in Unconsolidated Aquifers
- Oregon Administrative Rules 690-240-0139 Direct Push Monitoring Wells and Piezometers
- South Carolina Well Standards R.61-71
- Indiana Drilling Procedures and Monitoring Well Construction Guidelines

Goals of the San Diego Guidelines

- Ensure the quality of the seal
- Ensure the quality of the data
- Ensure a long lifetime of the well

Installation Scenarios That Are Being Discussed

- Seal above water table
- Seal below water table
- Open hole construction



The following information is preliminary and subject to change.
These are NOT approved guidelines.

Considerations For All Scenarios

- Know the subsurface geology and water table elevation beforehand.
- Depict this information on a well log.
- Direct push methods require different techniques for gathering this information than drilling methods.
 - Temporary piezometer
 - Soil sampling
 - Cone penetrometer data
 - Reasonable extrapolation of existing data

Seal Above Water Table

41 42 43 44 45 46 47

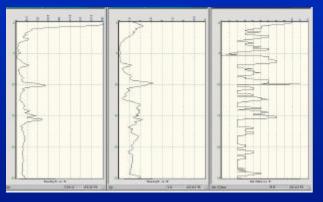
- Shall have a filter pack, either pre-packed or tremmied.
- Shall be designed to prevent transition seal materials from reaching screened interval.
- Shall have a transition seal of hydrated granular bentonite
- Shall have an annular seal
 - Grout
 - Hydrated granular bentonite

Prepacked Well Screens

Seal Extending Below Water Table

- Shall be constructed with a prepacked filter pack (?)
- May use (or may be required to use) a prepacked bentonite sleeve.

Open Hole Construction


- Open hole construction involves removing equipment from the hole prior to installing well materials.
- Must have favorable geologic conditions that prevent collapse of borehole walls
- Maximum total depth of 20 feet below grade.
- Must verify and document proper placement of annular materials.

Recent Test Installation

Before setting well:

- Collected CPT data for stratigraphy
- Collected soil samples for contaminant data
- Set temporary piezometer

Assembling the Prepacked Screen

Installing Foam Bridge

Transition Seal and Grout Tube

Installing Riser Pipe and Removing Push Rods

Surface Completion

Technical Workgroup Members

- Carol Spangenberg
 Co-chairperson
 County of San Diego SAM
- Kevin Heaton
 Steering Committee Contact
 County of San Diego SAM
- Blayne Hartman, HP Labs
- Barry Pulver, Regional Water Quality Control Board.

- Timothy Shields Co-chairperson Anteon Corp.
- Jerry Shiller, geologist.
- Chuck Houser, Southern California Soils and Testing
- Bill Hagen, Navy Public Works Center

Other Interested Parties:

- Wes McCall, Geoprobe Systems
- Jerry Boehm, Fugro
- Kent Cordry, GeoInsight
- Mark Kram, NFESC

For More Information, Please Contact:

Tim Shields

TShields@Anteon.com

(619) 524-6947